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Abstract

New protocols for the selective protection of the C(7) and C(10) hydroxyl groups of 10-deacetyl baccatin lil are described,
leading to more efficient semisyntheses of taxol and taxol analogs. The C(10) hydroxyl group of 10-DAB can be highly
selectively acylated or silylated, and subsequent selective protection of the C(7) hydroxyl group then becomes
straightforward. © 1998 Elsevier Science Ltd. All rights reserved.
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The emergence of taxol (1) as an important anticancer agent has resulted from extensive chemical,
biological, and medical research.i-22  The commercial production of :,emisynt'netic taxol currently utilizes a key
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coupling reaction of a suitably protected baccatin III derivative with a synthetic 3-lactam precursor of the C(13)

side chain.?2 10-Deacetyl baccatin ITI (10 DAB)3 (2), wh1ch possesses the skeleton of taxol and is commercially
and abundant
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C(1)-OH,* and Greene s group in 1988 reported the selective silylation of the C(7) hydroxyl group with
triethylsilyl chloride in pyridine to give 7-triethylsilyl-10-deacetyl baccatin (11I) (3) in 85% yield.> While Potier’s
and Greene’s studies provided some important insight regarding the relative reactivity of the hydroxyl groups in
10-DAB, their results failed to fully reveal the subtle reactivity difference of the C(7) and C(10) hydroxyl groups.
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We have found that, under different reaction conditions, the C(10) hydroxyl group of 10-DAB can be

highly selectively acylated or silylated. Subsequent selective protection of the C(7) hydroxyl group then becomes

straightforward, leading to more efficient and flexible protocols for the semisynthesis of taxol and taxol analogs.
Upon treatment of 10-DAB with Ac,0 in THF at room temperature in the absence of pyridine, baccatin 111

(6) was very slowly produced. The reaction did not proceed to completion even after several days. However,
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10-DARB reacted much faster with dibenzyl dicarbonate (20 equiv, THF, 25 °C, 24 h) to give 10-cbz-10-DAB (4)
in almost quantitative yield (98%). Diallyl dicarbonate reacted more slowly with 10-DAB under the same
conditions; after 48 h 10-allyloxycarbonyl-10-DAB (5) was formed in 95% yield at 70% conversion.

Various conditions were investigated with the goal of enhancing the reaction rate while retaining high
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selectivity. Addition of a base to the reaction mixture induced the formation of some 7-acetyl-10-DAB and 7-
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gave baccatin Il in 93% yield.¢ It should be noted that no 7-acetyl-10-DAB was produced under these
conditions. Us;gg this mgggdl_y‘g 10-DAR was also converted to the correﬂr)ondmg 10-chloroacetate 7 and the
10-propionate 8, both in 93% yield. Other Lewis acids were also found to be effective promoters of the
formation of C(10) esters and carbonates, and among these, lanthanides, particularly CeCl;, proved to be efficient
catalysts for the acylation. C(10) carbamates 16-19, however, were formed most selectively and efficiently in

the presence of CuCl. Conditions and results are summarized in Table 1.
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Table 1. Formation of 10-acyl-10-DAB from 10-DAB**
Product R Reagent (eq) Promoter (eq) | Time [Yield(%)

4 BnO (PhCH,0,C),0 (20) none 24 h 98

4 BnO (PhCH,0,C),0 (3) CeCl; (0.7) | 1h | 98

5 C3;H;0 | (CH,=CHCH,0,C),0 (40) none 48h | 95*

o 5 C3H;0 | (CH,=CHCH,0,C),0(5) | CeCl;5 (0.1) lh 96
n)l\o 6 CH, (CH,CO),0 (20 ZnCl, (2) 4h 93
\ZM: P 6 CH,4 (CH;CO0),0 (10) CeCl; (0.1) | 1.5h 95
Hoéa y % 7 CICH, (CICH,CO),0 (78) ZnCl, (2) 5h 93
o HO 0 N0 8 C;H, (C3H 7C0),0 (40) ZnCl, (2) Sh 93
P 8 C;H, (C3H,C0),0 (10) CeCl;(0.1) | 3h 100
° 9 i-CyH, (i-C3H,C0O),0 (10) CeCl, (0.1) (45h ] 100

io Ph (PhCO),0 (10) CeCl; (0.1) | 21h 54

11 | «CH; (¢-C;H4CO),0 (10) CeCly (0.1) |205h| 94

12 C3;H; (C3H5C0),0 (10) CeCl; (0.1) | 20h 91

13 | C,H;0 (C,H50C0),0 (5) CeCl; (0.1) | 3h | 99

14 CH,0 (CH;0 C0),0 (5) CeCl; (0.1) | 3h 98

15 t-BuO (+-BuOCO),0 (10) CeCl; (0.7) | 24h 94

16 |C,H,NH C,H,NCO (1.1) CuCl(l) |OS5Sh| 88

17 |C3HsNH| CH,=CHCH,NCO (1.1) CuCl (1) 05h 88

18 |C,H,NH C,4HyNCO (1.1) CuCl (1) 05h 87

19 PhNH PhNCO (1.1) CuCl (1) 3h %4

*At 70% conversion. **All reactions were conducted in THF (0.05M) at 25 °C.

Selective silylation of the C(10) hydroxyl group of 10-DAB is also pncmh]e The silvlatin o[eaaenfd
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selected for this study were N,O- bls(tnmcthylsﬂyl)tnﬂuoroacetalmde (2 0) (commercially available), N-methyl-N-
triethylsilyltrifluoroacetamide (2 1), N,O-bis(triethylsilyl)trifluoroacetamide (2 2),

and N,O-bis(¢-butyldimethyl-sily])trifluoroacetamide (2 3).8  As shown in Table oF g;his. uS oF _E_“,CHS
2, N,O-bis(trimethylsilyltrifluoroacetamide (20) reacted with 10-DAB in THF at  ~ © 20~ ° 21 “res
0 °C to give 10-TMS-10-DAB (24) in 91% yield. N-Methyl-N-triethylsilyltri- otes TBS
fluoroacetamide (2 1) reacted with 10-DAB in THF at 25 °Cto afford 10-TES-10- CF~C=NTES CF~C=NTBS
DAB (25) in 85% yield. It has been reported that a trace amount of fluoride ion 22 23
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dramatically catalyzes the reaction of N,O-bis(#-butyldimethylsilyl)trifluoroacetamde (2 3) with hydroxyl groups.?
We were disappointed to find that addition of a small amount of tetrabutylammonium fluoride to a mixture of 10-
DAB and N,O-bis(triethylsilyltrifluoroacetamide (22) in THF at 0 °C gave 10-TES-10-DAB (2 5) in only 70%

yield. However, when a cataiytic amount of LHMDS was added to a solution of
bis(triethyisilyl)trifiuoroacetamide (Z Z) in THF at O °C, ‘
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')ilcxu The mechanism of this catalysis is not yet clear, an Ta: appacaucn
of this method. Treatment of 10-DAB with N,O- b1s(t-butyld1methy]sﬂyl) trlﬂuoroacetamlde (23) and a catalytic
amount of LHMDS at 0 oC for § h afforded 10-TBS-10-DAB (26) in 70% vield. We have not been able to

prepare 10-TBS-10-DAB cleanly under various other reaction conditions.

Table 2. Formation of 10-silyl-10-DAB from 10-DAB
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Produ R Reaction Conditions Yield(%)
"G\—Z D) 24 | T™MS | 20, THF, 0°C,5h 91
.’ 25 | TES | 21, THF, 1, 24 h 85
m\(° t\o 25 TES | 22, LHMDS(cat), THF, 0 °C, 10 min 95
-2 o 26 | TBS | 23 LHMDS(cat), THF, 0°C, S h 70

In addition to the methods previously described by Greene and Potier for protection of the C(7) hydroxyl
group of 10-DAB,*-5 we have found that +butyldimethylsilyl (TBS).S tribenzylsilyl, dimethylphenylsilyl, and

dimethylisopropylsilyl groups can all be attached with high selectivity and yield RQ
under controlled conditions (Table 3). The C(7) hydroxyl groups of 10-acyl-10- \__Jo\ﬁ(o’ PR,

DAB, baccatin I1I, and 10-TES-10-DAB can also be protected selectively,!! and o (s
some illustrative additional examples from our laboratory are listed in Table 3.
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Tabie 3. Protection of the C(7)-OH Group of Baccatin III derivatives 3,27-38 o
Substrate | Product | R R, Reaction Conditions Yield(%)

2 3 H (Et);Si TESCI, pyridine, rt, 10 h 9110

2 27 H | +Bu(CH,),Si | TBSCI, imidazole, DMF, rt,24 h 906

2 28 | H | (CHi),i-PiSi | (CHj;),i-PrSiCl, pyridine, -10 °C, 3 h 93

2 29 | H | (CH;),PhSi | (CH;),PhSiCl, pyridine/THF, -20°C, 1 h 92

2 30 H | (PhCH,);Si | (PhCH,);SiCl, imidazole, DMF, rt, 3 h 91

6 31 Ac cbz (PhCH,0,(),0, CH,Cl,, DMAP, rt,4 h 95

6 32 Ac C;H,0CO | (CH,=CHCH,0,(),0, CH,Cl,, DMAP, 1t, 1 h 97

6 33 | Ac | (CH;),PhSi | (CH;),PhSiCl, pyridine/THF, -10°C, 1 h 98

] 34 Ac (CH3}2 -PrSi (ﬂnz)zi-rlol\,l, pyridine, 0°C, 3 h 97

6 35 Ac | (PhCH,);Si | (PhCH,;)3SiCl, imidazole, DMF, rt, 3 h 94

6 36 Ac Troc Cl;CCH,0,CCl, DMAP, pyridine, rt 9511

25 37 |TES cbz PhCH,0,CCl, CHCIl;, DMAP, rt, 4 h 93

25 38 |TES Troc Cl,CCH,0,CCl, CH,Cl,, DMAP, 1t, L h 97

The methods we describe here provide new flexibility which should prove to be of wide utility to those
attempting either the synthesis of taxanes or the chemical modification of substituents on the baccatin nucleus.
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